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Abstract

The in~uence of localized imperfections on the buckling of a long cylindrical shell under axial compression
is analysed by using a double scale analysis including interaction modes[ This leads to a system of coupled
complex non!linear di}erential equations with discontinuous derivatives[ We propose analytical formulas
to predict the reduction of the critical buckling load[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The elastic buckling of cylindrical shells under axial compression gave rise to several studies on
account of the high imperfection sensitivity of these structures[ One of the reasons of this strong
sensitivity to shape defects is the existence of a great number of coincident or nearly coincident
modes for large value of Batdorf parameter i[e[ for su.ciently long and su.ciently thin shells[ It
is not possible to represent correctly this phenomenon by taking into account only one mode in a
postbuckling analysis[ Hence Koiter "0852# shows that one must couple three modes to study the
in~uence of axisymmetric imperfections[ Several studies\ for example Arbocz "0876# have also
introduced many modes to analyse the in~uence of di}erent imperfection shapes correctly[

The postbuckling of these structures have as well been studied by numerical means\ usually with
simpli_ed codes[ Generally\ these codes associate a Fourier analysis in the circumferential direction
with a spatial discretization in the axial direction "Yamaki "0873#\ Bushnell "0874#\ Combescure
"0884##[ Nevertheless\ this direct approach selects some solutions from a great number\ which leads
to de~ections that are periodical in the circumferential direction and not periodical but distributed

� Author to whom correspondence should be addressed[
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in the axial direction[ Recently\ Hunt and Lucena Neto "0880# have proposed a semi!analytical
method to obtain localized solutions in the axial direction\ by coupling a double scale asymptotic
analysis in the axial sense and an approximation using three modes in the circumferential sense[

In this paper\ we propose to use the method of the last authors to study the in~uence\ on the
buckling load\ of localized defects in the axial direction[

It is known\ from\ Amazigo et al[ "0869# paper|s\ that localized defects have not the same
in~uence as the distributed defects and that this problem must be studied by assuming a nearly
periodic de~ection with slowly varying amplitudes[ Applications of this idea have been done for
pressurized cylindrical shells\ Amazigo and Fraser "0860#\ Abdelmoula et al[ "0881#\ but in this
case\ it is su.cient to modulate only one mode[ Let us note that a general theory has been proposed
"Damil and Potier!Ferry "0881## to take into account the in~uence of localized and distributed
defects in the case of only one instability mode\ but\ in this study\ three modes are needed[

Using a double scale analysis including three modes interaction in the presence of localized
imperfections\ we get the same three complex coupled non!linear second order di}erential equa!
tions\ as in Hunt and Lucena Neto "0880#\ with discontinuous derivatives in the region where the
localized imperfections are signi_cant[ The expression of these discontinuities is given in terms of
the shape of localized imperfections[ We solve numerically these three coupled di}erential equations
by means of the NewtonÐRaphson method[ Based on a scaling analysis\ we show that the reduction
of the critical load is proportional to "al#1:2\ where al is the amplitude of the localized imperfection[
We also give an estimation of the coe.cient of proportionality[

1[ Physical problem and linear analysis

We consider a circular cylindrical shell of radius R\ length L and thickness h\ which is made of
an homogeneous\ isotropic\ elastic material with Young|s modulus E and Poisson|s ratio n[ It is
subjected to an axial compressive load P[ The coordinate system is taken as shown in Fig[ 0"a#

Fig[ 0[ "a# Cylinder shell subject to a uniform axial compression[ "b# Cylindrical shell in presence of a localized
imperfection[
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and the displacement components will be denoted by u\ v and w[ Within Donnell theory and if the
pre!buckling rotations are neglected\ the transverse displacement w"x\ y# and the additional stress
function F"x\ y# are solutions of "Yamaki "0873#\ Hunt and Lucena Neto "0880##
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where l � P:Eh is the load parameter\ k1 � h1:01"0−n1#\ r � 0:R is the shell curvature and d"x\ y#
is the initial imperfection[ The stress function F is related to the resultant stress by
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We characterize the initial imperfection by its amplitude al and by its shape `l"x\ y# as follows

d"x\ y# � al`l"x\ y#\ max =`l"x\ y# = � 0 "4#

In addition\ we suppose that `l"x\ y# is rapidly decaying for large =x=\ which means that the
imperfection is axially localized near the central circle "Fig[ 0"b##[

Within the standard linear theory and without defect\ the critical value of the load l is char!
acterized by the existence of a buckling mode "w\ F#\ which is the solution of the linearized
equations[
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As we assume that the Batdorf parameter\ Z � L1z0−n1:Rh\ is su.ciently large\ the modes are
very oscillating in both axial and circumferential directions "Brush and Almroth "0864#\ Timo!
shenko and Gere "0850#\ Yamaki "0873##[ So\ in a _rst approximation\ the boundary conditions
at the ends of the shell can be replaced by the requirement of a harmonic behaviour in the x!
direction[ Hence\ the packet of buckling modes is expressed as

w � A exp"igx# cos bgy¦c[c[ "7#

F � A0 exp"igx# cos bgy¦c[c[ "8#

l � k1g1"0¦b1#1¦
r1

g1"0¦b1#1
"09#
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where A is an arbitrary constant\ A0 � rA:g1"0¦b1#1 and g � rn:b[ The nondimensional number
b is the modal aspect ratio "axial:circumferential wavelength#\ n is the number of waves in the
circumferential direction\ and c[c[ denotes the complex conjugate[

The analytical minimization of l gives

lc � 1rk "00#

g1"0¦b1#1 �
r

k
"01#

lc is the classical Donnel buckling load[ Within this classical analysis\ there are many coincident
modes and the corresponding wavenumbers g and bg are located on the Koiter circle "Fig[ 1#[
Equation "01# is the required condition for the mode "7# to be on the Koiter circle[

Let us remark that the boundary conditions could be reintroduced within the cellular bifurcation
theory that will be used in what follows "Newell and Whitehead "0858#\ Segel "0858#\ Lange and
Newell "0860#\ Potier!Ferry "0872#\ Damil and Potier!Ferry "0875##[ Nevertheless\ it is not necess!
ary to account for boundary conditions in the present study of localized postbuckling[

2[ Three coupled amplitude equations

In this section\ we solve the non!linear di}erential problem "0#\ "1# by using a double scale
perturbation analysis[ The expansion parameter h is connected with the amplitude of the localized
imperfection al by ]

h �"al#1:2 "02#

The double scale expansion method is a classical tool to analyse cellular bifurcations\ since papers
by Segel "0858# and Newell and Whitehead "0858#[ We introduce the following slowly varying
coordinate

X � h0:1x "03#

Fig[ 1[ The Koiter circle ] the number of waves in the circumferential direction vs the number of waves in the axial
direction[
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Thus\ x is quali_ed as a rapidly varying coordinate[ In order to simplify\ we introduce the following
notation

u � 0
w

F1 "04#

We shall assume that the unknown u is a function of the three {{independent|| variables X\ x\ y[
According to the classical rule within the double scale expansion method\ the following identities
hold " for m � 0\ 1\ [ [ [#
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where 19:1X9 � 19:1x9 � 0[ The bilaplacien operator D1 will be then replaced by ]
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The unknown u and the load parameter l are expanded into powers of h

u"x\ X\ y# � hu0"x\ X\ y#¦h2:1u2:1"x\ X\ y#¦h1u1"x\ X\ y#¦= = = "07#

l−lc � hl0¦h2:1l2:1¦h1l1¦= = = "08#

The orders of magnitude in "02#\ "03#\ "07# and "08# have been chosen to be in agreement\ _rst
with the expansions of Hunt and Lucena Neto "0880# who do not consider imperfections\ second
with the result of Koiter "0852# "see also Calladine\ 0872#\ where the double scale analysis is not
introduced[ Inserting eqns "05#Ð"08# into the equilibrium eqns "0# and "1#\ we _nd equations at
the three _rst orders h\ h2:1\ h1 ]
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is the linear operator of the problem\ that is the same for the three orders[ The right hand sides of
"10# and "11# depend on the de~ection and stress components] wi and Fi "i � 0\ 2:1#\ the expressions
of F2:1 and F1 are given in Appendix A[ The vector
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Gl � 2−lc

11`l"x\ y#

1x1

9 3 "13#

appearing in eqn "10# accounts for the shape of the localized imperfection[
Following the same idea as in "Hunt and Lucena Neto\ 0880#\ we intend to search the solutions

of perturbative eqns "19#Ð"11#\ by taking into account interaction modes[ In fact\ there are many
modes that generate the set of solutions of the _rst order eqn "19#[ It would be di.cult and
unnecessary to account for all these modes in the postbuckling analysis[ One gets non!linear modal
interactions by retaining the axisymmetric mode B and two rectangular modes A and C having
the same circumferential wavenumber\ as pictured in Fig[ 1 "Koiter "0834\ 0852##[ Note that it is
possible to retain only two modes\ the axisymmetric one and the square one "case where the modes
A and C coincide#\ see Calladine "0872#[ Here we retain the solution of the _rst!order eqn "19#
combining three modes ]

u0 � 0
A"X# eigx cos bgy¦B"X# eig"0¦b1#x¦C"X# eib1gx cos bgy¦c[c[

A0"X# eigx cos bgy¦B0"X# eig"0¦b1#x¦C0"X# eib1gx cos bgy¦c[c[1 "14#

where A0 � kA\ B0 � kB\ C0 � kC[ All these modes appear on the Koiter circle\ as seen in Fig[ 1[
Of course\ the number of circumferential waves n\ in the rectangular modes\ must be an integer\
i[e[ bg � nr[ At this stage\ the complex amplitudes A"X#\ B"X# and C"X# are arbitrary functions
of the slow variable X because only the rapid variables x and y appear in the di}erential operator
Ll[ With this u0\ the eqn "10# does not contain secular terms and its solution is given by

u2:1 � 0
9

d"X# eigx cos bgy¦e"X# eig"0¦b1#x¦f"X# eib1gx cos bgy¦c[c[1¦ul
2:1 "15#
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and where the last term in "15#
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accounts for the e}ect of the localized imperfection "we discuss this problem in Section 3#[ The
{{prime|| in "16# denotes a di}erentiation with respect to the slow variable X[

The operator Ll is singular[ Hence\ the nonhomogeneous eqn "11# has a solution if and only if
its right!hand side satis_es the solvability conditions

ðF1\ v�i Ł � 9\ i � 0\ 1\ 2 "17#

where the vectors v�i "i � 0\ 1\ 2# belong to the kernel of the adjoint operator L�l[ As shown in
Appendix B\ these solvability conditions yield three coupled non!linear second!order di}erential
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equations for the complex amplitudes A"X#\ B"X#\ C"X#\ which amount to those of Hunt and
Lucena Neto "0880# in real case ]

7k1"0−b1#1 d1A"X#

dX1
¦1l0A"X#¦5rb1B"X#CÞ"X# � 9 "18#

7k1"0¦b1#1 d1B"X#

dX1
¦1l0"0¦b1#1B"X#¦2rb1C"X#A"X# � 9 "29#

7k1"0−b1#1 d1C"X#

dX1
¦1l0b

3C"X#¦5rb1AÞ"X#B"X# � 9 "20#

where "!# means the complex conjugate of " #[
Hence eqns "18#Ð"20# govern the evolution of the modulated complex amplitudes A"X#\ B"X#

and C"X#[ We show in the next section that\ in the presence of localized imperfections\ these
amplitudes have discontinuous derivatives at X � 9[

3[ Account for local perturbation

We return to the problem "10# where we have seen that the solution which accounts for the
localized imperfection satis_es

Llu
l
2:1 � Gl "21#

To solve this problem\ it is convenient to introduce the Fourier transform de_ned as

f¼"v# �
0

z1p g
¦�

−�

f"x# eivx dx "22#

Equation "21# has in general no localized and smooth solution[ In their study of a beam buckling
problem\ Amazigo et al[ "0869# removed this di.culty by admitting solutions that are discontinuous
at X � 9\ what corresponds to the region where the localized imperfection lies[ From the point of
view of the asymptotic analysis introduced in Section 2\ in the presence of a localized imperfection\
we solve the non!linear problem by using two di}erent expansions of u or of their derivatives in
the region x ³ 9\ X ³ 9 and in the region x × 9\ X × 9[ Hence any quantity in these asymptotic
expansions can admit the possibility of discontinuities at X � 9\ but the unknown u\ and its
derivative du:dx\ d1u:dx1 and d2u:dx2 must be continuous at x � 9 and X � 9[ These continuity
conditions lead to conditions on the un and their derivatives "see Appendix C#[

Hence\ we seek solutions of "21# having discontinuities

ð f"9#Ł � f"9¦#−f"9−# "23#

Now the Fourier transform leads to

L"v#u¼ l
2:1 � S"v\ y# "24#

where
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is the operator of the problem in the Fourier space[ The right hand side S"v\ y# of "24# is a complex
vector depending on localized imperfections and on the discontinuities of the ul

2:1 and their
derivatives at X � 9[ Its expression is reported in Appendix C[

The operator L"v# is singular for v � g\ v � b1g and v � g"0¦b1#[ Hence\ the right hand side
of "24# must satisfy the following solvability conditions

ðS"v\ y#\ V�kŁ � 9\ "k � 0\ 1\ 2# "26#

where V�k are the three vectors belonging to the kernel of the adjoint operator L�"v# "see Appendix
C#[

Finally\ in the presence of a localized imperfection\ we _nd that the _rst order term of the
envelopes A"X#\ B"X# and C"X# are continuous but have discontinuous derivatives at X � 9 "i[e[
in the region where the localized imperfection is signi_cant# given by the following formulas "the
detail of the calculus is reported in Appendix C# ]
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In these equations\ ¼̀ l"v\ y# is the Fourier transform of `l"x\ y#\ which represents the shape of the
localized imperfection[

Coming back to the unscaled amplitudes and the unscaled variables\ we get the following non!
linear three coupled second!order di}erential equations completed by jump relations

7k1"0−b1#1 d1a"x#
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dx1
¦1"l−lc#b3 c"x#¦5rb1a¹ "x#b"x# � 9 "32#

$
da
dx
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db
dx

"9#%� aldB\ $
dc
dx

"9#%� aldC "33#
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In what follows\ we seek only symmetric solutions with respect to the x!axis[ In this case\ the
amplitudes a"x#\ b"x# and c"x# are real and verify\ on ð9\ ¦�ð\ the following system and conditions

7k1"0−b1#1 d1a"x#

dx1
¦1"l−lc#a"x#¦5rb1b"x#c"x# � 9 "34#

7k1"0¦b1#1 d1b"x#

dx1
¦1"l−lc#"0¦b1#1b"x#¦2rb1c"x#a"x# � 9 "35#

7k1"0−b1#1 d1c"x#

dx1
¦1"l−lc#b3 c"x#¦5rb1a"x#b"x# � 9 "36#

a?"9# �
dA

1
al\ b?"9# �

dB

1
al\ c?"9# �

dC

1
al "37#

Hence eqns "34#Ð"37# govern the evolution of the amplitudes a"x#\ b"x#\ c"x#[ In the case of a
subcritical bifurcation\ the localized imperfection transforms the bifurcation point "lc\ 9\ 9\ 9# into
a limit point "lmax\ amax\ bmax\ cmax#\ lmax being lower than lc[ The maximal load lmax will be computed
by solving the non!linear problem "34#Ð"36# with the relations "37#[ We shall propose\ in the next
section\ an analytical formulae giving an estimation of the reduction of the critical load[

4[ Reduction of the buckling load

4[0[ Numerical computation of the reduction of the bucklin` load

We now compute the reduction of the critical load by solving numerically the amplitude
equations and the jump relations[ Using a variational formulation of "34#Ð"37# and a _nite element
discretization\ we get an algebraic non!linear problem in the following classical form ]

"ðKEŁ−"l−lc#ðKGŁ¦ðKNŁ#"un# � "dabc#

where ðKEŁ is an elastic sti}ness matrix\ ðKGŁ is a geometrical sti}ness matrix\ ðKNŁ is a non!linear
sti}ness matrix\ "un# is the nodal vector and "dabc# is the global vector which depends on the
localized imperfection[ This problem is solved by a NewtonÐRaphson algorithm[

Choice of localized imperfection

To solve the problem "34#Ð"37#\ we must compute the coe.cients\ dA\ dB\ dC\ that appear in the
jump relations "37# which depend on the Fourier transform of the shape of the localized imper!
fections[ We shall consider an initial imperfection localized around x � 9\ having the following
shape ]

`l"x\ y# � e−0
x
C1

1

"dA cos gx cos bgy¦dB cos g"0¦b1#x¦dC cos gb1x cos bgy#\ C × 9 "38#

In "38#\ C is a positive constant which measures the width of the zone where the localized
imperfection is signi_cant "Fig[ 0"b## and dA\ dB\ dC are real numbers[ In what follows\ they take
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only two values 9 or 0[ Thus\ by choosing dA � 0 and dB � dC � 9 "or dA � dB � 9 and dC � 0#\ we
have a localized imperfection on the mode A "or on the mode C#[ The choice dA � dB � 0 and
dC � 9 "or dA � dB � dC � 0# corresponds to a localized imperfection on the two modes A and B
"or on the three modes A\ B\ C#[ Other choices would be possible[ The Fourier transform of "38#
is

¼̀ l"v\ y# �
Cz1

3 $dA 0e−0"v¦g#C
1 1

1

¦e−0"v−g#C
1 1
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1 1
1
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1 1
1
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1 1
1

1 cos bgy% "49#

With this choice\ the jump relations "37# become

da
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1
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#%�
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1
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Let us note that the modal aspect ratio b depends on the number of waves n in the circumferential
direction and on the ratio h:R via the following relation

b �
X

R
k
2X

R
k

−3n1

1n
\ for n ¾

0
1X

R
k

"43#

obtained from the required condition "01#\ where

X
R
k

�X
Rz01"0−n1#

h

This non dimensional parameter b decreases when the wavenumber increases in n[ Large modal
aspect ratios correspond to small wavenumbers[

We can write the jump relations "40#Ð"42# as function of n\ C:R\ h:R and al:h by using "00# and
the de_nition of g ]

da
dx

"9# � da

al

h
\

db
dx

"9# � db

al

h
\

dc
dx

"9# � dc

al

h

where
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Fig[ 2[ Numerical reduction of the critical load ] lmax:lc vs al:h for n � 9[2\ h:R � 9[99136 and n � 04[ "a# C:R � 9[994[
"b# C:R � 9[90[

da � −
z01p"0−n1#

7"0−b1#

C
R $dA 00¦e−0nC

bR1
1

1¦dC 0e−0
n"0¦b1#C

1bR 1
1

¦e−0
n"0−b1#C

1bR 1
1

1%
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7

C
R $dB 00¦e−0

n"0¦b1#C

bR 1
1

1%
dc � −

z01p"0−n1#

7"0−b1#

C
R $dA 0e−0

n"0¦b1#C

1bR 1
1

¦e−0
n"0−b1#C

1bR 1
1

1¦dC 00¦e−0nbC
R 1

1

1%
The non dimensional quantities da\ db and dc depend only on the ratios h:R\ C:R and on n[ Remark
that these da\ db\ dc are related to the dA\ dB\ dC de_ned in "27#Ð"39# by da � dAh:1\ db � dBh:1\
da � dCh:1[

The numerical prediction of the reduction of the critical buckling load in the presence of a
localized imperfection of amplitude al and of width C is presented in Fig[ 2[ This computation has
been carried out by taking the characteristics of the experimental specimens of Yamaki "0873# for
which the shell radius R � 099 mm\ thickness h � 9[136 mm and Poisson|s ratio n � 9[2[
We choose a number of waves in the circumferential direction n � 04 that gives a mode aspect
ratio b ¼ 1[ In order to evaluate the e}ect of the localized imperfection\ four di}erent shapes
are considered �0 dA � 0\ dB � dC � 9\ �1 dA � dB � 9\ dC � 0\ �2 dA � dB � 0\ dC � 9\ �5

dA � dB � dC � 0\ for two typical values of C:R "C:R � 9[994 and 9[90#[
It appears that the reduction of critical load is not proportional to al:h\ as in the case of a single

cellular buckling mode "Amazigo et al[\ 0869 ^ Damil and Potier!Ferry\ 0881#[ One gets the same
reduction\ whether the imperfection is on mode A or mode C[ As expected\ a combination of three
modes induces a stronger reduction than a combination of two modes[ The ratio C:R has a strong
in~uence on the load carrying capacity of the shell[ The Fig[ 2 permits us to con_rm the high
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imperfection sensitivity of this structure because we get 39) of reduction with a very localized
imperfection "C:R � 9[90# of moderate amplitude "al:h � 9[2#[

In the next paragraph\ we show that the reduction is proportional to "al:h#1:2[

4[1[ Analytic formulae for the reduction of bucklin` load

In this section\ we propose approximate analytical formulae for the reduction of the critical
buckling load[ First\ let us establish the following proposition[

Proposition ] The reduction of the critical buckling load for a cylindrical shell under axial
compression\ in the presence of a localized imperfection of amplitude al is proportional to "al#1:2 ]

lmax−lc � O""al#1:2# "44#

To prove this statement\ we introduce a set of new variables j\ a0\ b0\ c0 and L such that ]

x � j"al#m "45#

a � a0"al#s\ b � b0"al#s\ c � c0"al#s "46#

l−lc � L"al#o "47#

where m\ s and o are three exponents which will be determined in the following[ Injecting eqns
"45#Ð"47# in "34#Ð"36#\ we obtain the scaling form ]

7k1"0−b1#1 d1a0

dz1
"al#−"1m¦s#¦1La0"al#o−s¦5rb1b0c0 � 9 "48#

7k1"0¦b1#1 d1b0

dz1
"al#−"1m¦s#¦1"0¦b1#1Lb0"al#o−s¦2rb1c0a0 � 9 "59#

7k1"0−b1#1 d1c0

dz1
"al#−"1m¦s#¦1b3Lc0"al#o−s¦5rb1a0b0 � 9 "50#

The jump relations "37#\ write under this scaling change as ]

da0"9#
dz

"al#s−m �
dA

1
al "51#

db0"9#
dz

"al#s−m �
dB

1
al "52#

dc0"9#
dz

"al#s−m �
dC

1
al "53#

The scaling invariance property permits us to calculate this group of components under the
considered scaling change[ The three non!linear coupled second!order amplitude equations gov!
erning the buckling of cylindrical shells must be a scaling invariant[ Thus\ by comparing eqns "34#Ð
"37# and "48#Ð"50#\ we deduce the following relations between components
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1m¦s � 9\ o−s � 9\ s−m � 0 "54#

which gives

s � 1
2
\ m � −0

2
\ o � 1

2
"55#

It follows that\ the equation "47# can _nally be written in the form of power law as ]

l−lc � L"al#1:2 "56#

Hence the reduction of the critical load lm−lc is proportional to "al#1:2[

Reduction formulae for bucklin` load

We propose here an estimate of the coe.cient of proportionality L of the reduction formula
"56#[ Based on the conservation of energy\ we shall derive an estimated expression of the load in
terms of imperfection size\ of discontinuities of envelopes and of the cylindrical shell physical
characteristics[ Indeed\ the energy E of the system is "Hunt and Lucena Neto\ 0880#

E � 3k1""0−b1#1a?1¦1"0¦b1#1b?1¦"0−b1#1c?1#¦"l−lc#"a1¦1"0¦b1#1b1¦b3c1#

¦5rb1abc "57#

The conservation energy principle\ and the following boundedness conditions at in_nity

a"2�# �
da
dx

"¦�# � 9\ b"2�# �
db
dx

"¦�# � 9\ c"¦�# �
dc
dx

"2�# � 9 "58#

give "E"�#−E"9# � 9#

9 � 3k1""0−b1#1a?1"9#¦1"0¦b1#1b?1"9#¦"0−b1#1c?1"9##

¦"l−lc#"a1"9#¦1"0¦b1#1b1"9#¦b3c1"9##¦5rb1a"9#b"9#c"9# "69#

For this expression one can get a relation between the load l and the amplitude of the imperfection ]

l � lc−
k1"0−b1#1"d1

A¦d1
C#¦1k1"0¦b1#1d1

B

a1"9#¦1"0¦b1#1b1"9#¦b3c1"9#
a1

l −5rb1 a"9#b"9#c"9#

a1"9#¦1"0¦b1#1b1"9#¦b3c1"9#

"60#

The quantities a"9#\ b"9#\ c"9# depend on the load by eqns "34#Ð"37#[ The critical load is the
maximum of l along this solution path[ We propose here to forget the basic eqns "34#Ð"37# and
we try to maximize the parameter given by eqn "60# with respect to displacement measures a"9#\
b"9# and c"9#\ respectively\ namely

1l

1a"9#
� 9\

1l

1b"9#
� 9\

1l

1c"9#
� 9 "61#

So we get an approximation of the critical load[ "A detailed computation is reported in Appendix
D#[
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Fig[ 3[ Comparison between numerical "34#Ð"36#\ "40#Ð"42# and analytical results "62# for the reduction of the critical
load for n � 9[2\ h:R � 9[99136\ C:R � 9[994\ 9[90 and n � 04[ "a# Shape �0 ] dA � 0\ dB � dC � 9[ "b# Shape �5 ]
dA � dB � dC � 0[

lmax

lc

� 0−F 0
h
R

\
C
R

\ n1 0
al

h1
1:2

"62#

where

F 0
h
R

\
C
R

\ n1�
0

l0:2
c 0

8""0−b1#1"d1
a¦d1

c #¦1"0¦b1#1d1
b #

7"0¦b1#1 1
0:2

"63#

is the function of proportionality of the reduction of the critical load[

A correction of the reduction formula

Comparing the predicted "62# and calculated results "Fig[ 3#\ we remark that the approximate
analytic formula "62# subestimates the reduction of critical load[ Obviously\ this di}erence is due
to the approximation made to derive "62# from "60#[ An exact expression of the buckling load
l"a\ b\ c# should be rigorously extracted from the non!linear system "34#Ð"37#\ but the coupling
and the non!linear character of equations make di.cult viz impossible this analytical extraction[

Nevertheless\ this approximate analytic formula can give a better estimation of the reduction of
the critical load if we correct the proportionality coe.cient F"h:R\ C:R\ n# in "62#[ In order to
examine the di}erence between the two results\ we have computed the ratio C"h:R\ C:R\ n# between
the numerical value of the proportionality coe.cient

Fnumerical 0
h
R

\
C
R

\ n1�
0−

lnumerical
max

lc

0
al

h1
1:2

and the analytical one "63# for several tests[
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Fig[ 4[ "a# Variation of the analytical proportionality coe.cient F"62# with the number n[ Six cases of shapes of localized
imperfections[ h:R � 9[99136 and C:R � 9[994\ 9[90[ "b# Variation of the ratio C"h:R\ C:R\ n# with the number n[ Six
cases of shapes of localized imperfections[ h:R � 9[99136 and C:R � 9[994\ 9[90[

Let us note that the ratio C"h:R\ C:R\ n# depends strongly both on the shape of localized
imperfections and on the parameters h:R\ n and C:R[ To study its variation\ we have carried out
several tests by choosing di}erent shapes of imperfections and varying h:R\ n and also C:R[ Six
shapes of imperfections have been considered ] a defect on one mode "only the mode A �0 or the
mode C �1 #\ a defect on two modes "A and B �2 \ A and C �3 \ B and C �4 #\ a defect on the three
modes "A\ B and C �5 #[

Let us remark that the analytical proportionality coe.cient F eqn[ "63# do not depend strongly on
the wavenumber n for a _xed shape of defect as it can be seen on Fig[ 4a\ while the numerical one
Fnumerical depends slowly on the wave number n[ In Fig[ 4b\ we have plotted the ratio C"h:R\C:R\ n#
of the two proportionality coe.cients for _xed values of h:R and C:R vs n for the six shapes of defect[
One can remark that there are two families of curves[ The _rst one corresponds to vanishing
axisymmetric localized defect dB �9 and the second to non vanishing axisymmetric localized defect
dB �0[ We have remarked\ for the considered set of shapes of the localized imperfection\ that the
value of the ratio C"h:R\C:R\ n# cover the range] 9[24¾ C"h:R\C:R\n# ¾9[46\ for the _rst family
and cover the range ] 9[37¾C"h:R\C:R\n# ¾ 9[56\ for the second family as is shown in Fig[ 4b[

Analysing the results of these tests\ we propose the correction FCOR"h:R\ C:R\ n# of the pro!
portionality coe.cient that would be able to reproduce the numerical result for the considered six
shapes with a small di}erence in the presence of an axisymmetric imperfection

FCOR 0
h
R

\
C
R

\ n1�
0

l0:2
c 0

8"CCOR0"0−b1#1"d1
a¦d1

c #¦CCOR1"0¦b1#1d1
b #

7"0¦b1#1 1
0:2

"64#

Then the corrected approximate analytic formulae "62# will become
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(c)

Fig[ 5[ Comparison between numerical results "34#Ð"36#\ "40#Ð"42# and corrected analytical formulae "65# for the
reduction of the critical load for n � 9[2\ h:R � 9[99136\ C:R � 9[994\ 9[90 and n � 04[ CCOR0 � 9[03\ CCOR1 � 9[7 ] "a#
Shape �0 ] dA � 0\ dB � dC � 9 ^ "b# Shape �2 ] dA � dB � 0\ dC � 9 ^ "c# Shape �5 ] dA � dB � dC � 0[

lmax

lc

� 0−FCOR 0
h
R

\
C
R

\ n1 0
al

h1
1:2

"65#

Let us remark\ that correction!factors CCOR0\ CCOR1 depend weakly on C:R at _xed values of n and
h:R for the six shapes[

By comparing "64# with many numerical results we have found the best values of the correction!
factors CCOR0 � 9[03\ CCOR1 � 9[7[ These correction!factors have been chosen to _t the exact values
in the range of the largest wavenumbers "03 ³ n ³ 07#\ that are generally observed in experiments
"see Yamaki\ 0873#[

Some comparison between the corrected analytic formulae "65#\ "64# with CCOR0 � 9[03\
CCOR1 � 9[7 and the numerical result are plotted in Fig[ 5 for the three cases of the shapes of the
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Fig[ 6[ Variation of the corrected proportionality coe.cient FCOR "64# for the six cases of shapes of localized imper!
fections[ "a# With the ratio C:R\ h:R � 9[99136\ n � 04[ "b# With the ratio h:R\ n � 04 and C:R � 9[994\ 9[90[

localized imperfection �0 \ �2 \ �5 with n � 04 and C:R _xed at 9[994 and 9[90[ In Fig[ 5 the ratio
al:h takes values until 9[4\ while in Figs 2 and 3 its value is limited to 9[2[ We see that the two
results are in a good agreement for all shapes of the localized imperfection considered[

The eqns "65#\ "64# give explicitly an approximated relation between the maximal load and the
localized imperfection[ The variation of the proportionality coe.cient FCOR"h:R\ C:R\ n# in eqn
"64# as a function of the ratios C:R "width:radius#\ h:R "thickness:radius# is reported in Fig[ 6"a#
and 6"b#\ respectively\ for the six shapes �0 Ð�5 [ These plots show that for n � 04 and
h:R � 9[99136\ FCOR strongly increases with the increase in C:R while for C:R and n _xed FCOR is
a decreasing function of h:R in interval ð9[990\ 9[992Ł[

In summary\ the reduction of load carrying capacity depends mainly on the size and on the
shape of imperfection\ via several non dimensional parameters C:R\ h:R\ n\ al:h\ dA\ dB\ dC[ Our
asymptotic analysis predicts a reduction of critical load proportional to "al:h#1:2\ while generally
localized imperfections lead to a reduction proportional to al:h[ As expected\ that reduction is
greater if the imperfection combines two or three modes[ The amplitude al:h and the width of
imperfection C:R are the main parameters[ The shell geometry has a weak in~uence via the ratio
h:R "see Fig[ 6"b##\ but above all the shell geometry determined the possible modes and the critical
load lc[ Because the present analysis is asymptotic\ it is only valid for rather small values of al:h
and C:R[ To determine the range of validity of the present results\ a complete numerical solution
of the Donnell equations would be necessary\ that has not been done in this work[

5[ Conclusion

In this paper\ we have analysed in the framework of the cellular bifurcation theory the in~uence
of localized imperfections on the buckling of a long cylindrical shell subjected to an axial
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compression[ Using a double scale perturbation technique\ including interaction between three
modes\ we have established\ that the modulated amplitudes are governed by three coupled non!
linear di}erential equations with discontinuous derivatives in the region where the localized
imperfections are signi_cant[ According to these equations\ the reduction of buckling critical load
is proportional to "al#1:2\ where al is the amplitude of the localized imperfection[ A corrected
analytical formula\ eqn "65#\ for the reduction of critical load due to localized imperfection has
been derived[

Appendix A ] Component expressions of vectors F2:1 and F1

In this Appendix\ we give the components of the vectors F2:1 and F1 appearing in the right hand
side of problems "10# and "11#\ of Section 2[

For the determination of F2:1 and F1\ we substitute the operational rules "05#\ "06# and the series
expansion "07#\ "08# into equilibrium eqns "0# and "1#[ This gives the following expressions

F2:1 � 0
f2:1\0

f2:1\11� 0
−1

11

1x 1X
""1k1D¦lc#w0−rF0#

−1
11

1x 1X
"rw0¦1DF0#

1 "A0#

and

F1 � 0
f1\0

f1\11
with

f1\0 � −l0

11w0

1x1
−1

11

1x 1X
"1k1D¦lc#w2:1¦r 0

11F
1X1

¦1
11F2:1

1x 1X1
−03k1 13

1x1 1X1
¦

11

1X1
"1D¦lc#1w0¦ðw0\ F0Ł

f1\1 � −3
11

1x 1X
DF2:1−r 0

11w0

1X1
¦1

11w2:1

1x 1X1−1
11

1X1 01
11

1x1
¦D1F0−

0
1

ðw0\ w0Ł "A1#

where "w0\ F0# and "w2:1\ F2:1# are\ respectively\ the solutions of linear problems "19# and "10# given
by "14# and "15# without localized imperfections[ We recall here that the bracket operator ð\Ł is
de_ned by eqn "3# of Section 1[
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Appendix B ] Derivation of the three coupled amplitude equations

The problem "11# will have a bounded solution if and only if it satis_es to the following
solvability conditions ]

ðF1\ v�i Ł � 9\ i � 0\ 1\ 2 "B0#

where the three vectors v�i belonging to the kernel of the adjoint operator L�l of Ll are given by

v�0 � 0
e−igx cos bgy

−ke−igx cos bgy1\ v�1 � 0
e−ig"0¦b1#x

−ke−ig"0¦b1#x1\ v�2 � 0
e−igb1x cos bgy

−ke−igb1x cos bgy1 "B1#

The mean value in "B0# is de_ned by ]

ð f"x\ y#\ `"x\ y#Ł � lim
M:¦�

0
M g

M

−M g
1pR

9

f"x\ y#`"x\ y# dy dx "B2#

The solvability conditions "17# are equivalent to

ðF1\v�0Ł � lim
M:¦�

0
M g

¦M

−M g
1pR

9

" f1\0−kf1\1# e−igx cos"bgy# dy dx � 9

ðF1\v�1Ł � lim
M:¦�

0
M g

¦M

−M g
1pR

9

" f1\0−kf1\1# e−ig"0¦b1#x dy dx � 9

ðF1\v�2Ł � lim
M:¦�

0
M g

¦M

−M g
1pR

9

" f1\0−kf1\1# e−igb1x cos"bgy# dy dx � 9 "B3#

where f1\0 and f1\1 are given by "A1# "see Appendix A#[ Therefore\ by taking "14#\ "15# without
localized solution ul

2:1 and "16#\ we obtain\ after performing integrations in "B3#\ three coupled
non!linear second order di}erential equations given by "18#Ð"20#[

Appendix C ] Computation of the discontinuities of _rst derivatives of amplitudes

We report in this Appendix the details of computation permitting to get the _rst derivative
discontinuities of amplitudes A"X#\ B"X# and C"X# at X � 9[

In Section 3\ we have noted that to solve problem "21# which account for localized imperfections\
it is convenient to introduce the Fourier transform de_ned by "22# and to seek a solution of "21#
having discontinuities

ð f"9#Ł � f"9¦#−f"9−# "C0#

This leads to the problem
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L"v#ul¼
2:1 � S"v\ y# "C1#

where the components S0"v\ y# and S1"v\ y# of S"v\ y# are expressed in the terms of the possible
discontinuities of u2:1 and its derivatives as follows

S0"v\y# �
0

z1p 0k
1 $

12wl
2:1

1x2
"9\ y#%−ivk1 $

11wl
2:1

1x1
"9\ y#%−k1v1 $

1wl
2:1

1x
"9\y#%¦iv2k1ðwl

2:1"9\ y#Ł

¦1k1 $
12wl

2:1

1y1 1x
"9\y#%−1ivk1 $

11wl
2:1

1y1
"9\y#%¦lc $

1wl
2:1

1x
"9\ y#%−ilcvðwl

2:1"9\y#Ł

−r $
1Fl

2:1

1x
"9\ y#%¦irvðFl

2:1"9\ y#Ł¦lc $
1`l

1x
"9\ y#%−ilcvð`l"9\y#Ł1¦lcv

1 ¼̀ l"v\y#

S1"v\y# �
0

z1p 0$
12Fl

2:1

1x2
"9\y#%−iv $

11Fl
2:1

1x1
"9\ y#%−v1 $

1Fl
2:1

1x
"9\ y#%¦iv2ðFl

2:1"9\y#Ł

¦1 $
12Fl

2:1

1y1 1x
"9\y#%−1iv $

11Fl
2:1

1y1
"9\ y#%¦r $

1wl
2:1

1x
"9\ y#%−irvðwl

2:1"9\ y#Ł1 "C2#

We admit the possibility of discontinuity in the ui|s and in their derivatives at x � 9 and X � 9\ as
in "Amazigo et al[\ 0869 ^ Damil and Potier!Ferry\ 0881#\ but the generalized de~ection u\ the
generalized slope du:dx\ the generalized moment d1u:dx1 and the generalized shear d2u:dx2 must
be continuous in x and X[ These continuity conditions lead to the following continuity conditions
on the un and their derivatives[

F

G

G

G

G

g

G

G

G

G

f

ui

1ui

1x
¦

1ui−0:1

1X

11ui

1x1
¦1

11ui−0:1

1x 1X
¦

11ui−0

1X1

12ui

12x
¦2

12ui−0:1

1x1 1X
¦2

12ui−0

1x 1X1
¦

12ui−2:1

1X1

are continuous at x � X � 9 "C3#

It is understood in "C3# that uk � 9 for k ³ 0[ It should be noted here that the shape of localized
imperfection and their derivatives are continuous[ The continuity of the generalized displacement
at x � 9 and X � 9\ which permits us to express the discontinuity of "wl

i\ Fl
i# and their derivatives

as functions of the real and imaginary parts of the jumps in _rst derivatives of amplitudes ðA?"9#Ł\
ðB?"9#Ł and ðC?"9#Ł[

ðwl
2:1"9\ y#Ł � 9
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ðFl
2:1"9\ y#Ł �

3k"0−b1#

g"0¦b1#z1p 0ðIm A?"9#Ł−
0

b1
ðRe C?"9#Ł1 cos bgy¦

3k

g"0¦b1#
ðIm B?"9#Ł

$
1wl

2:1

1x
"9\ y#%� −1ðRe A?"9#Ł cos bgy−1ðRe B?"9#Ł−1ðRe C?"9#Ł cos bgy

$
1Fl

2:1

1x
"9\ y#%� 0

1k"0−2b1#

"0¦b1#
ðRe A?"9#Ł−

1k"2−b1#

"0¦b1#
ðRe C?"9#Ł1 cos bgy¦1kðRe B?"9#Ł

$
11wl

2:1

1x1
"9\ y#%� 3gðIm A?"9#Ł cos bgy¦3g"0¦b1#ðIm B?"9#Ł¦3gb1 ðIm C?"9#Ł cos bgy

$
11Fl

2:1

1x1
"9\ y#%�

7kgb1

"0¦b1#
ðIm A?"9#Ł cos bgy¦

7kgb1

"0¦b1#
ðIm C?"9#Ł cos bgy

$
12wl

2:1

1x2
"9\ y#%� 5g1 ðRe A?"9#Ł cos bgy¦5g1"0¦b1#ðRe B?"9#Ł¦5g1b3 ðRe C?"9#Ł cos bgy

$
12Fl

2:1

1x2
"9\ y#%� 0

1kg1"0¦4b1#

"0¦b1#
ðRe A?"9#Ł¦

1kg1b3"4¦b1#

"0¦b1#
ðRe C?"9#Ł1 cos bgy

¦1kg1"0¦b1#ðRe B?"9#Ł "C4#

where the symbols Re"[ [ [# and Im"[ [ [# are the real and the imaginary parts\ respectively\ of "[ [ [#[
Reporting the relations "C4# into "C2# by taking into account the continuity of the localized
imperfection and its _rst derivative at x � 9\ we get

S0"v\ y# � lcv
1 ¼̀ l"v\ y#¦

0

z1p 01k1"v1¦g1b3#ðRe A?"9#Ł cos bgy¦1k1v1 ðRe B?"9#Ł

¦1k1"v1¦g1#ðRe C?"9#Ł cos bgy−
i3k1vg

b1
"b5 ðIm A?"9#Ł¦ðIm C?"9#Ł# cos bgy1

S1"v\ y# �
0

z1p 0
1k

0¦b1
"b3g1"2−b1#−v1"0−2b1##ðRe A?"9#Ł cos bgy−1kv1 ðRe B?"9#Ł

¦
1k

0¦b1
"v1"2−b1#−g1"0−2b1##ðRe C?"9#Ł cos bgy¦

i3kv2

g"0¦b1#
ðIm B?"9#Ł

¦
i3kv

g"0¦b1#
""v1"0−b1#−1b3g1#ðIm A?"9#Ł# cos bgy

−
i3kv

g"0¦b1# 0
0

b1
"1b1g1¦v1"0−b1##ðIm C?"9#Ł1 cos bgy1 "C5#
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Since\ the operator L"v# is singular for v � g\ v � b1g and v � g"0¦b1#\ then the eqn "C1# has a
solution if and only if its right!hand side satis_es the solvability conditions

ðS"v\ y#\ V�kŁ � 9\ "k � 0\ 1\ 2# "C6#

where

L�"v � g#V�0 � 9\ L�"v � g"0¦b1##V�1 � 9\ L�"v � b1g#V�2 � 9 "C7#

with L�"v# is the adjoint operator of L"v#\ which is not self!adjoint and whose kernel is generated
by the vector V�k given by

V�0 � V�2 � 0
cos bgy

−k cos bgy1\ V�1 � 0
0

−k1 "C8#

The scalar product in "26# is de_ned by ]

ð f"y#\ v"y#Ł � g
1pR

9

f"y#v"y# dy "C09#

"C6# and "C09# give

g
1pR

9

"S0"g\ y#−kS1"g\ y## cos"bgy# dy � 9

g
1pR

9

"S0"g"0¦b1#\ y#−kS1"g"0¦b1#\ y## dy � 9

g
1pR

9

"S0"b1g\ y#−kS1"b1g\ y## cos"bgy# dy � 9 "C00#

The calculus of these integrals gives the expressions "27#Ð"39# of jumps in _rst derivatives of
amplitudes at X � 9[

Appendix D ] Reduction formulae for buckling load

To simplify the writing\ we introduce the following notations

a"9# � s0\ b"9# � s1\ c"9# � s2

x � s1
0¦1"0¦b1#1s1

1¦b3s1
2

t � s0s1s2\ r � 5rb1

u � k1 ð"0−b1#1"d1
A¦d1

C#¦1"0¦b1#1d1
BŁ "D0#
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So\ the eqns "D0# give\ after multiplication of the three equations obtained from "60# and "61#\
respectively\ by s0\ s1 and s2\ the following system where the unknown variables x and t are

rxt−1s1
0"ua1

l ¦rt# � 9 "D1#

rxt−3"0¦b1#1s1
1"ua1

l ¦rt# � 9 "D2#

rxt−1b3s1
2"ua1

l ¦rt# � 9 "D3#

Its solution is obtained by adding "respectively multiplying# the previous eqns "D1#Ð"D3#\ which
is

x � 5 0
b1"0¦b1#u

r 1
1:2

a3:2
l "D4#

t �
1u

r
a1

l "D5#

Inserting "D4# and "D5# in "54# written in terms of x and t as follows\

l � lc−
0
x
"ua1

l ¦rt# "D6#

we obtain the maximal load parameter given by eqn "56#[
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